Looking for Changes in Dust Drifts West of Alba Mons
Looking for Changes in Dust Drifts West of Alba Mons
ESP_032709_2210  Science Theme: Aeolian Processes
This image was intended to search for surface changes after three Mars years in a dust-covered region west of the Alba Mons volcano. It was acquired at almost the exact same season as another image in 2007, and the illumination and viewing angles are very similar.

The earlier image showed thick dust deposits accumulated downwind of topographic obstacles, apparently formed by winds blowing across the surface. These deposits, nicknamed “whiskers,” are evidently rare on Mars, so far found in only a few places such as the summit of Tharsis and on the flanks of the giant volcanoes. Their ages and origins are still poorly known. We expected that wind-related changes could be taking place here in particular because of the location's low elevation in comparison to similar dust deposits elsewhere on Mars. The atmosphere is denser at this elevation, near Martian “sea-level,” than at the tops of the giant volcanoes, so the winds are more effective at eroding and transporting sediment.

A comparison of the new image with the image taken in 2007 shows no discernible differences in the dust deposits. Analysis of the full image is still ongoing, but it is already clear that no major surface changes took place in this location over the three Mars year interval between the two pictures. This is instructive because it tells us that the dust deposits are resistant to wind erosion (under normal winds at least; the last major global dust storm was in early 2007, before PSP_006271_2210 was taken) and that no new dust deposition has taken place.

This result suggests that either these deposits form and evolve very slowly, over time scales much longer than three years, or else they formed during a past period when the winds were much stronger than they are today.

Written by: Paul Geissler (audio by Tre Gibbs)  (21 August 2013)
Acquisition date
19 July 2013

Local Mars time

Latitude (centered)

Longitude (East)

Spacecraft altitude
292.0 km (181.5 miles)

Original image scale range
29.3 cm/pixel (with 1 x 1 binning) so objects ~88 cm across are resolved

Map projected scale
25 cm/pixel and North is up

Map projection

Emission angle

Phase angle

Solar incidence angle
52°, with the Sun about 38° above the horizon

Solar longitude
353.8°, Northern Winter

For non-map projected images
North azimuth:  97°
Sub-solar azimuth:  317.4°
Black and white
map projected  non-map

IRB color
map projected  non-map

Merged IRB
map projected

Merged RGB
map projected

RGB color
non-map projected

Black and white
map-projected   (941MB)

IRB color
map-projected   (538MB)

Black and white
map-projected  (456MB)
non-map           (458MB)

IRB color
map projected  (187MB)
non-map           (372MB)

Merged IRB
map projected  (260MB)

Merged RGB
map-projected  (255MB)

RGB color
non map           (374MB)
B&W label
Color label
Merged IRB label
Merged RGB label
EDR products

IRB: infrared-red-blue
RGB: red-green-blue
About color products (PDF)

Black & white is 5 km across; enhanced color about 1 km
For scale, use JPEG/JP2 black & white map-projected images

All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible:

NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate, Washington. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona.