Don
NASA/JPL/University of Arizona
Don't Get Lost in the North Polar Ice Cap
ESP_035295_2670  Science Theme: Polar Geology
French  Spanish 

HICLIP

1080p (MP4)  
720p (MP4)  
Listen to the text  

WALLPAPER

800  1024  
1152  1280  
1440  1600  
1920  2048  
2560  2880  

HIFLYER

PDF, 11 x 17 in  

HISLIDES

PowerPoint  
Keynote  
PDF  
A bright ice cap of frozen water covers the North Pole of Mars. In the winter, thin coverings of carbon dioxide and water frost covers this area and these frosts finally disappear at the end of the Martian spring season.

In this image, the winter frosts are about to disappear and we can begin to see the surface features of the ice. The ice cap would be a bad place to get lost: it's one of the smoothest, flattest places on Mars so there are no landmarks visible. The surface features are gently rolling hummocks (or small mounds) and hollows about a meter (3 feet) in height and about 20 meters (60 feet) across. This monotonous landscape continues for hundreds of kilometers in every direction with this same repeating pattern.

Scientists do not know what makes this pattern so uniform over such large distances; we acquire HiRISE images like this one to look for small differences in these icy features from one place to another. Understanding this surface can help us understand the current climate and meteorological conditions at the North Pole of the Red Planet.

Written by: Shane Byrne (audio: Tre Gibbs)   (5 March 2014)

Click to share this post on Twitter Click to share this post on Facebook Click to share this post on Google+ Click to share this post on Tumblr



 
Acquisition date
05 February 2014

Local Mars time:
11:35

Latitude (centered)
86.810°

Longitude (East)
135.772°

Range to target site
319.5 km (199.7 miles)

Original image scale range
32.0 cm/pixel (with 1 x 1 binning) so objects ~96 cm across are resolved

Map projected scale
25 cm/pixel

Map projection
Polarstereographic

Emission angle:
0.1°

Phase angle:
61.8°

Solar incidence angle
62°, with the Sun about 28° above the horizon

Solar longitude
85.9°, Northern Spring

North azimuth:
146°

Sub-solar azimuth:
318.1°
JPEG
Black and white
map projected  non-map

IRB color
map projected  non-map

Merged IRB
map projected

Merged RGB
map projected

RGB color
non-map projected

JP2
Black and white
map-projected   (1224MB)

IRB color
map-projected   (639MB)

JP2 EXTRAS
Black and white
map-projected  (592MB)
non-map           (565MB)

IRB color
map projected  (282MB)
non-map           (449MB)

Merged IRB
map projected  (302MB)

Merged RGB
map-projected  (310MB)

RGB color
non map           (438MB)
ADDITIONAL INFORMATION
B&W label
Color label
Merged IRB label
Merged RGB label
EDR products
HiView

NB
IRB: infrared-red-blue
RGB: red-green-blue
About color products (PDF)

Black & white is 5 km across; enhanced color about 1 km
For scale, use JPEG/JP2 black & white map-projected images



USAGE POLICY
All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible:
NASA/JPL/University of Arizona



Postscript
For information about NASA and agency programs on the Web, visit: http://www.nasa.gov. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona. The image data were processed using the U.S. Geological Survey’s ISIS3 software.