The Obliquity of Mars (Periodic Bedding in Tithonium Chasma)
NASA/JPL/University of Arizona

The Obliquity of Mars (Periodic Bedding in Tithonium Chasma)
ESP_034132_1750  Science Theme: Geologic Contacts/Stratigraphy
Spanish Icelandic 


HICLIP

720p (MP4)  
Listen to the text  

WALLPAPER

800  1024  
1152  1280  
1440  1600  
1920  2048  
2560  2880 

HIFLYER

PDF, 11 x 17 in  

HISLIDES

PowerPoint  
Keynote  
PDF  
Earth’s seasons are caused by the tilt of our planet’s rotational axis to the orbital plane or obliquity. Mars’ obliquity is currently about 25 degrees, which is not much different from Earth's 23 degrees. However, numerical calculations by scientists at the Paris Observatory and Massachusetts Institute of Technology suggest that this near-agreement is a coincidence.

Under the influence of gravitational torques from other planets, Mars’ obliquity varies chaotically, probably reaching values greater than 60 degrees and lower than 10 degrees. By contrast, Earth’s obliquity appears to have been limited to small variations from its current value because of the stabilizing gravitational influence of the Moon. If the calculations are correct, then for most of the Solar System’s history, the obliquity of Mars was greater than 25 degrees. This would produce warmer summers and colder winters than on present-day Mars. On Earth, a recent 1 degree rise in obliquity is believed to have triggered ice sheet retreat from the current location of New York City to Greenland. The climatic consequences of 50 degree changes in obliquity on Mars remain unknown.

It is possible, though unproven, that higher obliquity triggered partial melting of some of Mars’ water ice. Our best chance at understanding this is to find piles of ice, dust, silt or sand that accumulated over many cycles of obliquity change. Chemical, mineralogical and isotopic variations within those piles could then offer clues to about past climate changes. On Mars, sediment layers of near-uniform thickness visible from orbit are a fingerprint of deposits that record many cycles of obliquity change.

This HiRISE image of an east-facing slope in Tithonium Chasma was taken to follow up an earlier Context Camera image that seemed to show sediment layers of near-uniform thickness. These sediment layers are the dark and light stripes that run diagonally across the center of the observation. In this top-down view, afternoon sunlight picks out subtle east-west trending ridges in the east-facing slope. The dark and light stripes appear to deflect to the east (downslope) across the ridges. To a geologist, this outcrop pattern shows that the dip of the ancient sediment layers is gentler than the slope of the modern hillside. Further analysis of the image may determine whether these layers do record ancient obliquity-driven climate change on Mars.

Written by: Edwin Kite (audio by Tre Gibbs)   (9 January 2014)

This is a stereo pair with ESP_034554_1750.

  Click to share this post on Twitter Click to share this post on Facebook Click to share this post on Google+ Click to share this post on Tumblr


 Image Products: All image links are drag & drop for HiView, or click to download
JPEG
Grayscale: map projected  non-map
IRB color: map projected  non-map
Merged IRB: map projected
Merged RGB: map projected
RGB color: non-map projected

JP2 DOWNLOAD
Grayscale: map-projected (667.1 MB)
IRB color: map-projected (413.1 MB)

JP2 EXTRAS
Grayscale: map-projected  (345.2 MB),
non-map  (355.9 MB)
IRB color: map projected  (132.9 MB)
non-map  (329.1 MB)
Merged IRB: map projected  (168.6 MB)
Merged RGB: map-projected  (163.4 MB)
RGB color: non map-projected  (321.1 MB)

ANAGLYPHS
Map-projected reduced-resolution (PNG)
Full resolution JP2 download
View anaglyph details page

ADDITIONAL IMAGE INFORMATION
Grayscale label   Color label
Merged IRB label   Merged RGB label
EDR products

About color products (PDF)
HiView main page

 Observation Toolbox
Acquisition date:07 November 2013 Local Mars time: 2:54 PM
Latitude (centered):-4.828° Longitude (East):270.995°
Range to target site:262.6 km (164.1 miles)Original image scale range:26.3 cm/pixel (with 1 x 1 binning) so objects ~79 cm across are resolved
Map projected scale:25 cm/pixel and North is upMap projection:Equirectangular
Emission angle:2.5° Phase angle:50.7°
Solar incidence angle:49°, with the Sun about 41° above the horizon Solar longitude:46.1°, Northern Spring
For non-map projected products:
North azimuth:97° Sub-solar azimuth:35.2°
For map-projected products
North azimuth:270°Sub solar azimuth:208.8°

Context map

Usage Policy
All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible: Image: NASA/JPL/University of Arizona
Postscript
For information about NASA and agency programs on the Web, visit: http://www.nasa.gov. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona. The image data were processed using the U.S. Geological Survey’s ISIS3 software.