Dunes on the Rim of the Hellas Impact Basin
NASA/JPL/University of Arizona

Dunes on the Rim of the Hellas Impact Basin
ESP_034101_1385  Science Theme: Aeolian Processes


HICLIP

720p (MP4)  
Listen to the text  

WALLPAPER

800  1024  
1152  1280  
1440  1600  
1920  2048  
2560  2880 

HIFLYER

PDF, 11 x 17 in  

HISLIDES

PowerPoint  
Keynote  
PDF  
Sand dunes like these seen in this image have been observed to creep slowly across the surface of Mars through the action of the wind. These are a particular type of dune called a “barchan”, which forms when the wind blows in one direction (here, east to west) for long periods of time. Barchan dunes are common on Mars and in the desert regions of the Earth.

These barchan dunes are located on the western rim of the Hellas impact basin, in the Southern Hemisphere of Mars. This area is covered by extensive deposits of layered rocks that were initially deposited as loose sediments and over time formed these rock layers. Portions of these layered rocks were subsequently eroded away and the remaining layers now form numerous flat-topped hills called “mesas”. The barchan dunes are forming in the lee (or downwind) of the mesas.

This area was previously image by HiRISE in 2008 and was retargeted here through a public request via HiWish. Careful comparison of repeat images such as these can reveal the speed and manner by which dunes move across the Martian surface. This information can be used to study the current atmosphere of Mars, the age and mobility of sand deposits on the planet’s surface, and the hazards that sand dunes may pose to landed vehicles such as rovers.

Over the course of its mission, the science instruments on board the Mars Reconnaissance Orbiter (MRO) have returned over 200 terabits of data back to Earth. This image was taken on November 4, 2013, the same day that MRO’s 200-terabit mark was surpassed.

Written by: Chris Okubo (audio by Tre Gibbs)   (15 January 2014)

  Click to share this post on Twitter Click to share this post on Facebook Click to share this post on Google+ Click to share this post on Tumblr


 Image Products: All image links are drag & drop for HiView, or click to download
JPEG
Grayscale: map projected  non-map
IRB color: map projected  non-map
Merged IRB: map projected
Merged RGB: map projected
RGB color: non-map projected

JP2 DOWNLOAD
Grayscale: map-projected (724.5 MB)
IRB color: map-projected (449.7 MB)

JP2 EXTRAS
Grayscale: map-projected  (329.9 MB),
non-map  (381.9 MB)
IRB color: map projected  (127.8 MB)
non-map  (309.2 MB)
Merged IRB: map projected  (182.7 MB)
Merged RGB: map-projected  (176.1 MB)
RGB color: non map-projected  (303.1 MB)

ADDITIONAL IMAGE INFORMATION
Grayscale label   Color label
Merged IRB label   Merged RGB label
EDR products

About color products (PDF)
HiView main page

 Observation Toolbox
Acquisition date:04 November 2013 Local Mars time: 3:11 PM
Latitude (centered):-41.373° Longitude (East):44.606°
Range to target site:273.9 km (171.2 miles)Original image scale range:27.4 cm/pixel (with 1 x 1 binning) so objects ~82 cm across are resolved
Map projected scale:25 cm/pixel and North is upMap projection:Equirectangular
Emission angle:22.7° Phase angle:60.7°
Solar incidence angle:74°, with the Sun about 16° above the horizon Solar longitude:45.0°, Northern Spring
For non-map projected products:
North azimuth:97° Sub-solar azimuth:51.9°
For map-projected products
North azimuth:270°Sub solar azimuth:221.8°

Context map

Usage Policy
All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible: Image: NASA/JPL/University of Arizona
Postscript
For information about NASA and agency programs on the Web, visit: http://www.nasa.gov. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona. The image data were processed using the U.S. Geological Survey’s ISIS3 software.