Dunes and Ripples in Valles Marineris
NASA/JPL/University of Arizona
Dunes and Ripples in Valles Marineris
ESP_025297_1730  Science Theme: Composition and Photometry
French  Greek  Italian  Portuguese  Spanish 


720p (MP4)  
Listen to the text  


800  1024  
1152  1280  
1440  1600  
1920  2048  


PDF, 11 x 17 in  


Two types of wind-blown sedimentary deposits are pictured in this scene of the floor of Ius Chasma in the Valles Marineris.

Smaller light toned ridge-like ripples draped over the bright bedrock are visible in this subimage. Long dark sand dunes superpose the small ridges, indicating that the sand dunes formed more recently than the ridges. Earlier observations have shown that the small ridges, known as "transverse aeolian ridges" or TARs, appear to be fixed in place. They are typically found near the equator of Mars, in places where the winds alternate in direction over daily or seasonal cycles.

Detailed investigations by the MER rovers revealed that the TARs were armored by a surface layer of coarse granules left behind after the smaller particles were winnowed away by the wind. These granules are too large to be lifted by the wind and preserve the TARs from further erosion. In contrast, recent HiRISE observations show that many of the dark sand dunes on Mars are actively on the move.

From these facts, we can hypothesize the recent history of the aeolian deposits here in Ius Chasma. Unconsolidated sediments were formed in the canyon by impact fragmentation and erosion of the steep canyon walls. These sediments were eroded and shaped into dunes by the winds that blow up and down the canyon, alternating direction between day and night. Eventually the tireless winds won the battle over sediment supply, and the remaining sediments were sifted into the TARs visible in the image, oriented perpendicular to the length of the canyon (transverse to the winds).

More recently, a fresh supply of sand was introduced into the canyon that the winds have not yet had time to tame. Instead of forming simple crescent dunes, the bidirectional winds have shaped the sand into long linear dunes punctuated by short slip faces. At high resolution, we see that the linear sand dunes are ruffled along their lengths by ripples transverse to the wind directions. Ultimately, most of this sand will be swept away, leaving the TARs trapped behind.

Written by: Paul Geissler   (8 February 2012)

This is a stereo pair with ESP_025653_1730.

Click to share this post on Twitter Click to share this post on Facebook Click to share this post on Google+ Click to share this post on Tumblr

 Image Products: All image links are drag & drop for HiView, or click to download
B&W: map projected  non-map

IRB color: map projected  non-map

Merged IRB: map projected

Merged RGB: map projected

RGB color: non-map projected

B&W: map-projected (858MB)

IRB color: map-projected (495MB)
B&W: map-projected  (442MB),
non-map  (475MB)

IRB color: map projected  (194MB)
non-map  (453MB)

Merged IRB: map projected  (197MB)

Merged RGB: map-projected  (200MB)

RGB color: non map-projected  (446MB)
Map-projected reduced-resolution (PNG)
Full resolution JP2 download
View anaglyph details page

B&W label
Color label
Merged IRB label
Merged RGB label
EDR products

About color products (PDF)
HiView main page

 Observation Toolbox
Acquisition date:19 December 2011 Local Mars time:14:50
Latitude (centered):-7.020° Longitude (East):275.570°
Range to target site:265.6 km (166.0 miles)Original image scale range:26.6 cm/pixel (with 1 x 1 binning) so objects ~80 cm across are resolved
Map projected scale:25 cm/pixel and North is upMap projection:Equirectangular
Emission angle:0.1° Phase angle:48.9°
Solar incidence angle:49°, with the Sun about 41° above the horizon Solar longitude:45.5°, Northern Spring

Context map

Usage Policy
All of the images produced by HiRISE and accessible on this site are within the public domain: there are no restrictions on their usage by anyone in the public, including news or science organizations. We do ask for a credit line where possible: Image: NASA/JPL/University of Arizona
For information about NASA and agency programs on the Web, visit: http://www.nasa.gov. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona. The image data were processed using the U.S. Geological Survey’s ISIS3 software.